Antimicrobial Stewardship in Arkansas

Jordan Murdoch, PharmD
HIV and HAI Programs
Infectious Disease Branch
Disclosure

I, Jordan Murdoch, have no actual or potential conflict of interest in relation to this program/presentation.
Definitions

- **Antimicrobial** – all agents that act (kill or prevent further growth) against all types of microorganisms
 - **Antibiotic** – act against bacteria
 - **Antiviral** – act against viruses
 - **Antifungal** – act against fungi
- **Resistance** – the ability of a microorganism to stop an antimicrobial from working against it
- **Stewardship** – the careful and responsible management of something entrusted to one’s care
“It’s time to close the books on infectious diseases, declare the war against pestilence won, and shift national resources to such chronic problems as cancer and heart disease.”
-William H. Stewart
1967
Thanks to PENICILLIN
...He Will Come Home!
WE HAVE PENICILLIN IN STOCK

This store can now service the public through the medical profession with penicillin.
Penicillin Cures Gonorrhea in 4 Hours

See your doctor today.
“It is not difficult to make microbes resistant to penicillin in the laboratory by exposing them to concentrations not sufficient to kill them, and the same thing has occasionally happened in the body. The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant.”

-Alexander Fleming
Figure 1 Timeline of antibiotic deployment and the evolution of antibiotic resistance. The year each antibiotic was deployed is depicted above the timeline, and the year resistance to each antibiotic was observed is depicted below the timeline (with the caveat that the appearance of antibiotic resistance does not necessarily imply that a given antibiotic has lost all clinical utility).
“Without urgent, coordinated action by many stakeholders, the world is headed for a post-antibiotic era, in which common infections and minor injuries which have been treatable for decades can once again kill.”

- Dr. Keiji Fukuda
Assistant Director-General, WHO (2010-2016)
Number of Antibacterial NDAs* Approved

*NDAs = new drug applications

Adapted from: CL Ventola. P&T 2015; 40:4(277-83)
How do bacteria become resistant?

Bacteria, not the body, become resistant to the antibiotics designed to kill them.

When bacteria become resistant, antibiotics cannot fight them, and the bacteria multiply.

Some resistant bacteria can be harder to treat and can spread to other people.

How do bacteria become resistant?

- Random gene mutation
- Sharing genetic material through plasmids
- Plasmids are small portions of DNA that encode a particular trait

How fast do bacteria multiply?

http://www.bbc.co.uk/schools/gcsebitesize/science/images/21c_bio_microorganisms.jpg
Increase in Antibiotic Resistance

% Incidence

MRSA = methicillin-resistant *Staphylococcus aureus*; VRE = Vancomycin-resistant *enterococci*
FQRFP = Fluoroquinolone-resistant *Pseudomonas aeruginosa*
Centers for Disease Control and Prevention (CDC) 2019 Threat Report

Antibiotic Resistance

The Threat of Antibiotic Resistance in the United States
Antibiotic resistance—when germs (bacteria, fungi) develop the ability to defeat the antibiotics designed to kill them—is one of the greatest global health challenges of modern times.

New National Estimate
Each year, antibiotic-resistant bacteria and fungi cause at least an estimated:

- **2,868,700** infections
- **223,900** cases
- **35,900** deaths
- **12,800** deaths

Clostridioides difficile is related to antibiotic use and antibiotic resistance.

New Antibiotic Resistance Threats List
Updated urgent, serious, and concerning threats—totaling 18

- **5** urgent threats
- **2** new threats
- **3** threats

Antibiotic resistance remains a significant One Health problem, affecting humans, animals, and the environment. Data show infection prevention and control is saving lives—especially in hospitals—but threats may undermine this progress without continued aggressive action now.

Learn more: www.cdc.gov/DrugResistance/Biggest-Threats.html

*National burden reflects de-duplicated infection and death estimates. **Clostridioides difficile** cases from hospitalized patients in 2017. Revised Dec. 2019*
Four Core Actions to Prevent Resistance

- Preventing infections
- Tracking
- Improving antimicrobial prescribing/stewardship
- Developing new drugs and diagnostic tests

Arkansas Activities to Address Core Actions

- **Preventing infections**
 - Conducting Infection Control Assessment and Readiness (ICAR) visits
 - ~130 on-site visits to healthcare facilities in 3 years
 - Promoting vaccinations
 - Targeting outreach to facilities with higher numbers of healthcare-associated infections

- **Tracking**
 - Implementing standard surveillance for antibiotic resistant pathogens, especially for the urgent category
 - Identifying important resistant mechanisms at the state public health laboratory

- **Improving antimicrobial prescribing/stewardship**
 - Providing education to prescribers
 - Analyzing antimicrobial prescribing patterns across the state by working with key partners
What is Antimicrobial Stewardship?

• Definition (IDSA):
 • Antimicrobial stewardship refers to coordinated interventions designed to improve and measure the appropriate use of antimicrobials by promoting the selection of the optimal antimicrobial drug regimen, dose, duration of therapy, and route of administration.

• Antibiotics are a shared resource

• 5 Ds: Right Diagnosis, Drug, Dose, Duration, and De-escalation